Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Биосенсор

Современный глюкометр для измерения уровня глюкозы в крови. Слева – игла для прокалывания кожи.

Биосе́нсор — это аналитический прибор, в котором для определения химических соединений используются реакции этих соединений, катализируемые ферментами, иммунохимические реакции или реакции, проходящие в органеллах, клетках или тканях. В биосенсорах биологический компонент сочетается с физико-химическим преобразователем.

Биосенсоры состоят из трёх частей:

  • биоселективного элемента (биологический материал, например ткани, микроорганизмы, органеллы, клеточные рецепторы, ферменты, антитела, нуклеиновые кислоты, и т. д.), материал биологического происхождения или биомимик). Чувствительный элемент может быть создан с помощью биоинженерии.
  • преобразователя (работает на физико-химических принципах; оптический, пьезоэлектрический, электрохимический, и т. д.), который преобразует сигнал, появляющийся в результате взаимодействия аналита с биоселективным элементом, в другой сигнал, который проще измерить;
  • связанная электроника, которая отвечает в первую очередь за отображение результатов в удобном для пользователя виде..

Самый известный пример коммерческого биосенсора — это биосенсор для измерения уровня глюкозы в крови, в котором используется фермент глюкозоксидаза для расщепления содержащейся в крови глюкозы. В процессе расщепления фермент сначала окисляет глюкозу и использует два электрона для восстановления ФАД (компонент фермента) в ФАДН2, который, в свою очередь, окисляется в несколько ступеней электродом. Результирующий ток пропорционален концентрации глюкозы. В этом случае, электрод является преобразователем, а фермент — биоселективным элементом.

С недавних пор, массивы из многих различных молекул детектора применяются в так называемых электронных носах, где наборы откликов от детекторов используются для определения веществ. Современные электронные носы, тем не менее, не используют биологический материал (то есть являются хемосенсорами).

Домашняя канарейка, которая применялась шахтерами для предупреждения об утечке газа, может считаться биосенсором. Многие из современных биосенсоров работают на том же принципе, то есть используют организмы, которые реагируют на значительно меньшие концентрации токсических веществ, чем это делает человек, предупреждая таким образом о присутствии яда. Эти приборы могут использоваться для экологического мониторинга, определения незначительных примесей нефтепродуктов и на сооружениях для очистки сточных вод.

Классификация биосенсоров

В зависимости от типа преобразователя, биосенсоры классифицируют на оптические, акустические, калориметрические, термические и электрохимические. Электрохимические биосенсоры, в свою очередь, делят на потенциометрические, амперометрические и кондуктометрические.

Оптические биосенсоры

Значительная часть оптических биосенсоров основаны на явлении поверхностного плазмонного резонанса и используют свойство золотых и других материалов, а именно то, что тонкий слой золота, нанесенный на имеющую высокий коэффициент преломления стеклянную поверхность может абсорбировать лазерный свет, создавая электронные волны (поверхностные плазмоны) на золотой поверхности. Это происходит только при определенном угле падения и длине волны падающего света и в такой степени зависит от поверхности золотого слоя, что присоединение аналита к биологическому рецептору на поверхности этого слоя генерирует заметный сигнал. Сенсоры на основе поверхностного плазмонного резонанса представляют собой сенсорный чип, который состоит из пластиковой кассеты, несущей стеклянную тарелку, одна сторона которой покрыта микроскопическим слоем золота. Эта сторона взаимодействует с оптической распознающей аппаратурой прибора. Противоположная сторона тарелки соединяется с жидкостной проточной системой. Растворенные в жидкости реагенты могут непосредственно контактировать с поверхностью тарелки. Эта сторона стеклянного сенсорного чипа может быть различными путями модифицирована, позволяя легко присоединять интересующие молекулы. Обычно она покрыта карбоксиметилдекстраном или подобным веществом.

Свет с фиксированной длиной волны отражается от покрытой золотом стороны чипа под углом полного внутреннего отражения, и детектируется внутри прибора. Этот свет индуцирует исчезающую волну, которая проникает сквозь стеклянную тарелку в раствор вблизи её поверхности.

Коэффициент преломления проточной стороны сенсорного чипа прямо влияет на поведение света, отраженного от покрытой золотом стороны. Связывание веществ с поверхностью проточной стороны чипа влияет на коэффициент преломления, что можно зарегистрировать оптической аппаратурой; таким образом биологические взаимодействия могут быть измерены с высоким уровнем чувствительности.

Другие биосенсоры на основе исчезающей волны были коммерциализированы с использованием волноводов, в которых константа распространения света через волновод изменяется при абсорбции молекул на поверхность волновода. Например, в двойной поляризационной интерферометрии используются два волновода, один из которых изолирован и является эталонным, а второй волновод непосредственно контактирует с исследуемым образцом. Сравнивая константы скорости распространения света в обоих волноводах, делают заключение о концентрации аналита.

Оптические биосенсоры основаны в основном на изменении в абсорбции или флуоресценции соответствующего индикаторного компонента и не нуждаются в полном внутреннем отражении. Например, разработан полностью функционирующий прототип прибора для определения казеина в молоке. Прибор основан на обнаружении изменений в абсорбции золотого слоя. Широко используемый в молекулярной биологии исследовательский инструмент, ДНК-микрочип, может также считаться оптическим биосенсором.

Электрохимические биосенсоры

Электрохимические биосенсоры обычно основаны на ферментативном катализе реакции, в которой освобождаются или поглощаются электроны (используемые ферменты принадлежат к классу оксидоредуктаз). Биосенсор обычно включает в себя три электрода: электрод сравнения, рабочий и вспомогательный. На поверхность рабочего электрода наносят биологический материал, который специфически вступает в реакцию с аналитом. Заряженные продукты реакции создают на рабочем электроде потенциал, который отнимается от потенциала на электроде сравнения для получения выходящего сигнала. Применяется также измерение силы тока (в этом случае интенсивность потока электронов пропорциональна концентрации аналита) при постоянном потенциале или потенциал можно измерять при нулевой силе тока (это даёт логарифмический отклик). Нужно отметить, что на потенциал электродов влияет заряд их окружения, что часто используется. Более того, возможно прямое электрическое определение небольших пептидов и белков по характерному для них заряду, используя биологически модифицированные ион-селективные полевые транзисторы (ИСПТ).

Другие типы биосенсоров

В пьезоэлектрических сенсорах используются кристаллы, которые эластически деформируются при воздействии на них электрического потенциала. Переменный потенциал при определённой частоте вызывает стоячую волну в кристалле. Эта частота в значительной степени зависит от эластичных свойств кристалла, поэтому, если кристалл покрыт биологическим распознающим элементом, присоединение большого количества аналита к рецептору приведет к изменению резонансной частоты, что и служит сигналом о связывании.

Термические и магнитные биосенсоры практически не распространены.

См. также


Новое сообщение